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Abstract
The cubic vector nonlinear Schrödinger equation with an external trigonometric
potential models a quasi-one-dimensional multi-component Bose–Einstein
condensate trapped in a standing light wave. We construct families of
exact stationary solutions for the more general case of an elliptic function
potential. Some of these solutions degenerate to zero as the effect of the
external potential disappears, whereas others limit to solutions of the free vector
nonlinear Schrödinger equation. The stability of these solutions is examined
both analytically and numerically. The stability results depend on the nature
of the atomic interactions not only within the components but also between
components. As in the scalar case (one component) with repulsive interaction,
all linearly stable solutions are deformations of the ground state of the linear
Schrödinger equation. Unlike the scalar case with attractive interaction, no
solutions are found to be stable if there is any attractive interaction present.

PACS numbers: 03.75.Lm, 03.75.Mn, 02.30.Jr, 02.60.Cb, 02.70.Hm

1. Introduction

The experimental realization of Bose–Einstein condensation [1] provides one of a few
examples of a macroscopic quantum phenomenon [2, 3]. The creation of a Bose–Einstein
condensate (BEC) is accomplished experimentally by super-cooling certain dilute alkali gases
to below a critical temperature, generally in the microKelvin range (see [4] for an overview).
Currently, the entire experiment takes place in an electromagnetic trap [5] of the order of
millimetres or smaller. In most experiments, the electromagnetic trap results in a confining
potential which is harmonic, or very nearly so. In addition to confining potentials, recent
interest has focused on sinusoidal potentials, obtained by placing the BEC in a standing light
wave [6]. Possible applications of BECs in sinusoidal potentials include the study of phase
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coherence [7–9], matter-wave diffraction [10], matter-wave gratings and matter-wave transport
[11], and quantum logic [12, 13].

In most experiments, only one atomic species is involved, and only one quantum state
of this atomic species participates in the condensation. However, experiments where two
distinct BECs are present in the same trap are possible: in [14, 15] two different condensates
correspond to different spin states of 87Rb; in [16] an optical trap was used for the confinement
of a 23Na spinor condensate, effectively resulting in distinct interacting condensates. More
recently, interacting condensates of different atomic species were produced [17].

In this paper, the mean-field dynamics and stability of quasi-one-dimensional, coupled,
dilute-gas BECs in a sinusoidal potential are examined. The case of a single condensate in such
a potential was already considered in [18, 19] (BEC with repulsive interatomic interaction)
and [20] (BEC with attractive interatomic interaction).

The mean-field theory for the ground state of a single macroscopic BEC wavefunction is
constructed using the Hartree–Fock approximation [21], assuming a full occupancy rate for
the condensate (i.e. zero temperature), and a hard interaction between atoms. The resulting
governing equation is the Gross–Pitaevskii equation [22, 23]. Note that the asymptotic
exactness of this equation was demonstrated in [24, 25]. The number of spatial dimensions
that are considered is a crucial factor for the dynamics of the condensate. One-dimensional,
two-dimensional and three-dimensional BECs all behave in radically different manners
[26, 27]. The quasi-one-dimensional regime is relevant when the transverse dimensions
of the condensate are of the order of its healing length, and both are much smaller than its
longitudinal dimension [28, 29]. Thus the condensate has the form of an ellipsoid stretched
along one of its major axes. In this regime the BEC remains phase coherent and the governing
equation is one dimensional: the Gross–Pitaevskii equation reduces to a one-dimensional
nonlinear Schrödinger equation (NLS) with an external potential. The quasi-one-dimensional
regime should be contrasted with a truly one-dimensional theory which requires transverse
dimensions of the order of or less than the atomic interaction length.

If more than one distinct condensate is trapped in the confining potential the Gross–
Pitaevskii equation is no longer sufficient. In this case, the wavefunction for each BEC
satisfies its own Gross–Pitaevskii equation, coupled to the others by nonlinear mean-field
interactions (see, for instance, [4, 30, 31]). Thus, in the quasi-one-dimensional regime,
the dynamics is governed by a set of coupled NLS equations with an external potential.
This dynamics depends heavily on the sign of the coupling constants, which characterize
the strength of the interaction between the different condensates. Myatt et al [14] observed
experimentally that the BECs corresponding to different spin states of 87Rb have a repulsive
interaction, implying a positive coupling constant. However, for other atomic species and their
isotopes, the coupling constant can be negative, resulting in various possibilities: BECs with
repulsive interatomic interaction and repulsive or attractive coupling, BECs with attractive
interatomic interaction and repulsive or attractive coupling, and mixes of these two scenarios.
All these are considered for two classes of exact solutions of the coupled NLS equations with
a sinusoidal potential and generalizations thereof. Note that the stability of such coupled
condensates was considered previously in [4, 31], for the case of harmonic confinement, using
a variational reduction.

The paper is outlined as follows. In the next section we discuss the governing evolution
equations along with the confining potential. Section 3 introduces two classes of exact solutions
of these equations, which are valid for an arbitrary number of interacting condensates. Partial
stability results for these exact solutions are given in section 4. These stability results are
confirmed and augmented by numerical simulations in section 5. A brief discussion of the
results and their significance in an experimental context concludes the paper.
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2. Governing equations

The governing equations for the interaction of n � 2 condensates are [4]

ih̄
∂�j

∂t
= − h̄2

2mj

∂2�j

∂x2
+ Vj(x)�j +

n∑
l=1

2πh̄2ajl

mjl

|�l|2�j j = 1, . . . , n. (1)

Here, �j(x, t) is the wavefunction for the j th condensate; Vj(x) is the external potential
experienced by the j th condensate. In most situations Vj(x) = V (x) is identical for all
j = 1, . . . , n. However, because of the different properties of constituting atoms of the
different condensates, it is possible for different condensates in the same physical trap to
experience different external potentials. Also, mj is the atom mass of the atom species of
the j th condensate; mjl = mjml/(mj + ml) is the reduced mass corresponding to atom
species of the j th and lth condensates; finally, ajl = alj is the s-wave scattering length
between the atomic species j and l. The sign of this s-wave scattering length determines
the nature of the interaction between the different atomic species: a positive value gives
rise to a repulsive interatomic interaction, whereas a negative value causes an attractive
interaction.

Equations (1) can be made nondimensional by rescaling of the dependent and independent
variables. After this rescaling, the equations have the form

i
∂�j

∂t
= − 1

2µj

∂2�j

∂x2
+ Vj(x)�j +

n∑
l=1

αjl |�l|2�j j = 1, . . . , n. (2)

We have not introduced new symbols for the dimensionless quantities, so as not to overburden
the notation. The symmetric matrix α = (αjk)

n
j,k=1 contains all information about the nature

of the interatomic interactions. Its entries are referred to as interaction coefficients. The
parameters µj , j = 1, . . . , n, play the role of effective masses. Current experiments [14–16]
with multiple condensates use different spin states or distinct isotopes of one atomic species,
so that all µj , j = 1, . . . , n, are equal. In that case, the parameters µj , j = 1, . . . , n, can be
removed by another scaling transformation, so that effectively µj = 1, j = 1, . . . , n. This is
the case used in the numerical simulations of section 5.

The external potentials considered in this paper are generalizations of the sinusoidal,
standing light wave potential [6]:

Vj(x) = −V0j sn2(mx, k) (3)

with −V0j an amplitude parameter. The function sn(mx, k) denotes Jacobi’s elliptic sine
function [32]. As the elliptic modulus k → 0, sn(mx, k) → sin(mx). The Jacobi sine
function sn(mx, k) is periodic in x for every value of k ∈ [0, 1), with period given by the
elliptic integral 4K(k)/m = (4/m)

∫ π/2
0 dz/

√
1 − k2 sin2 z. Note that this period approaches

infinity as k → 1. Thus, as k → 1, the potential (3) is a periodic lattice of separated peaks or
troughs, depending on the sign of V0j . Hence, by changing the parameter k, various interesting
regimes of the BECs are considered. This is the reason for considering potentials that are
more general than the standing light wave potential. From (3) it follows that the potentials
considered here are identical for all condensates, modulo an amplitude factor. The − sign
is part of the definition of the potential because in the important limit, as the elliptic
modulus k → 0, Vj (x) = −V0j sin2(mx), which equals V0j cos 2mx, up to an additive
constant.
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3. Exact solutions

This section gives a dictionary of the families of exact solutions we were able to find. These
families are extensions of the families found for the scalar case, discussed in [19, 20]. There
are two distinct types of solutions. Both types of solutions require all components of the
condensate to have the same functional form, i.e., the types cannot be mixed.

3.1. Type A

Solutions of type A are solutions for which the density of each condensate |�k(x, t)|2 is
a quadratic function of sn(x, k). These solutions are given by �j(x, t) = exp(−iωj t +
iθj (x))rj (x), θjx = cj /r2

j (x), j = 1, . . . , n, with

r2
j = Aj sn2(mx, k) + Bj (4a)
n∑

l=1

αjlAl = V0j + m2k2µj (4b)

ωj = 1

2
m2(1 + k2)µj +

1

2
m2k2µj

Bj

Aj

+
n∑

l=1

αjlBl (4c)

c2
j = m2 Bj

Aj

(Aj + Bj )(Aj + k2Bj ) (4d )

and j = 1, . . . , n. Thus, in order to uniquely determine the amplitude of the elliptic oscillations
Aj, j = 1, . . . , n, the matrix α needs to be inverted. The resulting family of solutions has
n free parameters Bj , j = 1, . . . , n, playing the role of an offset. Trivial-phase solutions
(θj (x) = 0) occur for those values of Bj for which the corresponding cj = 0. Specifically,

Bj = 0: �j(x, t) = √
Aj sn(mx, k) e−iωj t (5a)

Bj = −Aj : �j(x, t) = √−Aj cn(mx, k) e−iωj t (5b)

Bj = −Aj/k2 : �j(x, t) =
√

−Aj/k2 dn(mx, k) e−iωj t . (5c)

Here cn(mx, k) and dn(mx, k) denote the Jacobian elliptic cosine and the third Jacobian
elliptic function, respectively [32]. Note that it is possible for some component solutions
�j(x, t) to have trivial phase, whereas others may have nontrivial phase. The solutions
(4a)–(4d ) have both trigonometric (k → 0, sn → sin) and hyperbolic (k → 1, sn → tanh)

limits. As mentioned in the previous sections, especially the trigonometric limit is relevant for
applications. These limiting solutions are discussed in more detail in [19]. In contrast to the
trivial-phase limit, it is not possible for some components to have trigonometric or hyperbolic
profiles, while others have elliptic profiles, since the elliptic parameter k is identical for all
components.

In order to use the trivial-phase solutions in numerical simulations, it is necessary to
establish their existence regions, i.e. the regions in parameter space where a certain type of
solution is defined. This is a daunting task for n � 3, and is very tedious even for n = 2. It is
essential to reduce the dimension of parameter space as much as possible. The parameters in
question are the n(n+1)/2 entries of the matrix α, the n reduced masses µj , j = 1, . . . , n, and
the n components of the potential amplitude V0j , j = 1, . . . , n. In what follows, the effective
masses µj, j = 1, . . . , n, are all equated to 1. Although this does affect the size and shape
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Figure 1. Parameter space for a two-component condensate with repulsive self-interactions.
(a) Parameter space for type A solutions with coupling interaction α > 1. In region 1, only
the trivial-phase sn–sn solution is defined. In region 2, trivial-phase solutions sn–cn and sn–dn
are possible, whereas in region 3, the trivial-phase solution types cn–cn, cn–dn and dn–dn exist.
(b) Parameter space for type B1.

of the distinct existence regions, it does not affect their number, since all the effective masses
are positive. Furthermore, by the use of a scaling transformation, the diagonal elements of α
can be rescaled to ±1. When using this scaling transformation it is essential that the diagonal
elements have equal magnitude, to retain the symmetry of the matrix α. This is justified in
the case of different isotopes or different spin states.

As an example, consider the case of n = 2, with both species having repulsive self-
interaction: α11 = α22 = 1. Then the equations determining A1 and A2 are{

A1 + αA2 = V01 + m2k2

αA1 + A2 = V02 + m2k2
(6)

with α = α12 = α21. From (5a)–(5c) it follows that the solution (5a) is defined in regions
where the corresponding amplitude is positive, whereas the solutions (5b) and (5c) are defined
in regions where the corresponding amplitude is negative. This is illustrated in figure 1(a) for
α > 1. Other regimes exist for α < 1, and for different choices of the self-interaction.

3.2. Type B

Solutions of type B are solutions for which the density of each condensate |�k(x, t)|2 is a
linear function of a Jacobian elliptic function. For these solutions, the potential strengths are
limited by

V0j = − 3
8m2k2µj j = 1, . . . , n. (7)

It is clear from this that these solutions have no trigonometric limit: (2) degenerates to the
VNLS equation without external potential, which does not have solutions whose density is
linear in terms of Jacobi elliptic functions. Indeed, all solutions of type B approach zero in
the trigonometric limit. Hyperbolic limits do exist, however. All the solution families of type
B have n free parameters. It is convenient to choose these as the amplitude of the oscillations
Aj, j = 1, . . . , n. As before the expressions for these solutions use an amplitude–phase
decomposition: �j(x, t) = rj (x) exp(−iωj t + iθj (x)), θjx = cj /r2

j (x), j = 1, . . . , n. Then
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• Type B1:

r2
j = Aj sn(mx, k) + Bj (8a)

Bj = −4Aj

µjm2k2

n∑
l=1

αjlAl (8b)

ωj = 1

8
µjm

2(1 + k2) − 1

8
µjm

2k2
B2

j

A2
j

+
n∑

l=1

αjlBl (8c)

c2
j = m2

4A2
j

(
B2

j − A2
j

)(
A2

j − k2B2
j

)
. (8d )

Several trivial-phase solutions exist, for those values of Aj that annihilate c2
j :

�j(x, t) = σj

√
Aj(sn(mx, k) + 1) exp(−iωj t) (Aj = Bj > 0, type B1a); �j(x, t) =

σj

√
Aj(sn(mx, k) − 1) exp(−iωj t) (Aj = −Bj < 0, type B1b); �j(x, t) =√

Aj(sn(mx, k) + 1/k) exp(−iωj t) (Aj = kBj > 0, type B1c); and �j(x, t) =√
Aj(sn(mx, k) − 1/k) exp(−iωj t) (Aj = −kBj < 0, type B1d ); here σj = ±1,

piecewise continuous, chosen so as to ensure �j(x, t) is analytic in x.
• Type B2:

r2
j = Ajcn(mx, k) + Bj (9a)

Bj = 4Aj

µjm2k2

n∑
l=1

αjlAl (9b)

ωj = 1

8
µjm

2(1 + k2) +
1

8
µjm

2k2
B2

j

A2
j

+
n∑

l=1

αjlBl (9c)

c2
j = m2

4A2
j

(
B2

j − A2
j

)(
A2

j + k2B2
j − k2A2

j

)
. (9d )

For type B2, two types of trivial-phase solutions exist: �j(x, t) =
σj

√
Aj(cn(mx, k) + 1) exp(−iωj t) (Aj = Bj > 0, type B2a); and �j(x, t) =

σj

√
Aj(cn(mx, k) − 1) exp(−iωj t) (Aj = Bj < 0, type B2b), where σj is as mentioned

before.
• Type B3:

r2
j = Ajdn(mx, k) + Bj (10a)

Bj = 4Aj

µjm2

n∑
l=1

αjlAl (10b)

ωj = 1

8
µjm

2(1 + k2) +
1

8
µjm

2
B2

j

A2
j

+
n∑

l=1

αjlBl (10c)

c2
j = m2

4A2
j

(
A2

j − B2
j

)(
A2

j − B2
j − k2A2

j

)
. (10d )

Here four types of trivial-phase solutions exist: �j(x, t) =√
Aj(dn(mx, k) + 1) exp(−iωj t) (Aj = Bj > 0, type B3a); �j(x, t) =√
Aj(dn(mx, k) − 1) exp(−iωj t) (Aj = −Bj < 0, type B3b); �j(x, t) =√
Aj(dn(mx, k) +

√
1 − k2) exp(−iωj t) (Aj = Bj/

√
1 − k2 > 0, type B3c);
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�j(x, t) = σj

√
Aj(dn(mx, k) − √

1 − k2) exp(−iωj t) (Aj = −Bj/
√

1 − k2 > 0, type
B3d ), where σj is as mentioned before.

Note that mixing of these solution types is not allowed: it is not possible for one component
of the condensate to correspond to a solution of type B1, while another corresponds to type B2

or B3. Mixing of different types of trivial-phase solutions of the same type is possible.
Since the potential strengths V0j , j = 1, . . . , n, are constrained for type B solutions,

parameter space is lower dimensional than for the solutions of type A. Specifically, for the
case of a two-component condensate with preset self-interactions, there is only one parameter,
α, the off-diagonal element of the interaction matrix. The n = 2 case of type B1 solutions with
repulsive self-interactions is illustrated in figure 1(b). Many other regimes exist for different
self-interactions and different solution types.

4. Stability analysis

To examine the linear stability of these exact solutions analytically, the governing
equations (2) are linearized around the exact solution,

�j(x, t) = eiθj (x)−iωj t (rj (x) + εφj (x, t)) (11)

for a small parameter ε. Substitution of (11) in (2) and ignoring terms containing higher than
linear powers in ε gives

∂

∂t

(
u

v

)
= J

(
L+ S

−S L−

) (
u

v

)
(12)

where u = (u1, . . . , un)
T , v = (v1, . . . , vn)

T , and uj , vj are the real and imaginary parts of
φj . Also

J =
(

0n 1n

−1n 0n

)
(13)

where 0n and 1n are the n×n zero and identity matrix, respectively. The n×n matrix operators
L+, L−, S are given by

(L+)jk =
{
L+

j j = k

2αjkrj rk j �= k
(14)

(L−)jk =
{
L−

j j = k

0 j �= k
(15)

(S)jk =
{
Sj j = k

0 j �= k
(16)

with

L+
j = −1

2
∂2
x +

c2
j

2r4
j

+
n∑

k=1

αjkr
2
k + Vj − ωj + 2αjj r

2
j j = 1, . . . , n (17)

L−
j = −1

2
∂2
x +

c2
j

2r4
j

+
n∑

k=1

αjkr
2
k + Vj − ωj j = 1, . . . , n (18)

Sj = cj

rj

∂x

1

rj

j = 1, . . . , n. (19)
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The treatment of the linear stability analysis for nontrivial-phase solutions (cj �= 0,
for any j ) is beyond the scope of our methods, even in the scalar case (n = 1).
However, if all condensate components are described by trivial solutions, more analysis is
possible [18–20].

In the trivial-phase case cj = 0 and thus Sj = 0, j = 1, . . . , n. Upon using separation of
variables (u(x, t), v(x, t)) → eλt (u(x), v(x)) in (12), the spectral problem reduces to{

L−v = λu

L+u = −λv.
(20)

Thus, if the spectral problem (20) has any positive eigenvalues, then the solution is
linearly unstable. However, if all eigenvalues are imaginary, then the solution is linearly
stable.

Note that

L−




r1

...

rn


 = 0

and thus λ = 0 is an eigenvalue of L−, with eigenfunction (r1, . . . , rn)
T . Next, let

λ± = inf
‖ψ‖=1

〈ψ|L±|ψ〉

where ‖ψ‖ = ( ∫ 4K(k)/m

0 |ψ|2 dx
)1/2

is the standard L2-norm, and 〈ψ1|L±|ψ2〉 =∫ 4K(k)/m

0 ψ∗
1 L±ψ2 dx, and ψ∗

1 denotes the complex conjugate of ψ1. Thus, λ+ (λ−) is the
smallest eigenvalue of L+ (L−). Next, L+ = L− + 2(αR2), where (αR2)jk = αjkrj rk , for
j, k = 1, . . . , n.

Then

Lemma 1. The n×n matrix (αR2)nj,k=1 is positive (negative) definite if and only if the matrix
(α)nj,k=1 is positive (negative) definite.

Proof. The matrix (αR2)nj,k=1 is positive definite if and only if all its principal minors are
positive [33]. The principal minors of (αR2)nj,k=1 are the determinants of (αR2)mj,k=1, for
m = 1, . . . , n. But every element of the j th row of the matrix in the mth principal minor of
(αR2)nj,k=1 contains rj , and every element of the kth column of the matrix in the mth principal
minor contains rk , thus

det(αR2)mj,k=1 =

 n∏

j=1

r2
j


 det(α)mj,k=1

for m = 1, . . . , n. Here det(α)mj,k=1 is the mth principal minor of (α)nj,k=1, which proves the
lemma. The negative definite case is identical to the proof given here, with ‘positive’ replaced
by ‘negative’. �

The above lemma leads to the following:

Theorem 1. If α is positive definite, then

• if rj (x) > 0 for all x, j = 1, . . . , n, then the trivial-phase solution �j(x, t) = e−iωj t rj (x)

is linearly stable;
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• if rj (x) < 0 for any x, for any j ∈ [1, n] and the matrix operator L+ is positive, then the
trivial-phase solution �j(x, t) = e−iωj t rj (x) is linearly unstable.

Proof. If α is a positive-definite matrix, then by lemma 1, L+ − L− = 2(αR2) is a positive
operator, or L+ > L−. If rj (x) > 0 for all x, j = 1, . . . , n, then (r1, . . . , rn)

T is a ground state
of L− [34], and λ− = 0 or L+ > L− is a positive operator. Then there exists a self-adjoint
positive operator H,

H = (L+)1/2L−(L+)1/2. (21)

In terms of this operator, the spectral problem (20) is rewritten as

(H + λ21n)w = 0 (22)

with w = (L+)1/2u. From this representation and the fact that H is positive, it follows that
λ2 < 0, thus all λ are imaginary. This proves the first assertion.

To prove the second assertion, note that if rj (x) < 0 for any x, for any j ∈ [1, n], then
(r1, . . . , rn)

T is not the ground state of L− [34], thus λ− < 0, and there exists a ϕ(x) such
that 〈ϕ|L−|ϕ〉 < 0. Assuming λ+ > 0, the construction leading to (22) remains valid. In
particular, the operator H in (21) is still defined. Let ϕ0 = (L+)−1/2ϕ, then

〈ϕ0|H |ϕ0〉 = 〈ϕ0|(L+)1/2L−(L+)1/2|ϕ0〉
= 〈ϕ|L−|ϕ〉
< 0

from which it follows that positive λ2 in (22) exist, leading to the presence of unstable modes.
This establishes the second assertion. �

This theorem provides two criteria for establishing linear stability analytically for positive-
definite α, i.e. the case of overall repulsive interaction. The first of these criteria is very
practical, requiring no more than an inspection of the solution. The second criterion is less
practical, requiring proving that L+ is a positive operator. If α is negative definite (overall
attractive interaction), the following negative result holds:

Theorem 2. If α is negative definite, and rj (x) > 0 for all x, j = 1, . . . , n, then the
trivial-phase solution �j(x, t) = e−iωj t rj (x) is linearly unstable.

Proof. If rj (x) > 0 for all x, j = 1, . . . , n, then (r1, . . . , rn)
T is a ground state of L− [34],

and λ− = 0 or L− is a non-negative operator. Then there exists a self-adjoint positive operator
H,

H = (L−)1/2L+(L−)1/2.

In terms of this operator, the spectral problem (20) is rewritten as (22), with w = (L−)1/2u. If
α is a negative definite matrix, then by lemma 1, L− − L+ = −2(αR2) is a positive operator,
or L− > L+, hence λ+ < λ−. Using a similar argument as to prove the second assertion of
theorem 1 concludes the proof. �

Theorems 1 and 2 cover only few of the exact solutions described in the previous section.
No information is obtained about the stability of nontrivial-phase solutions, or about the case
when α is neither positive nor negative definite. For all these cases, we resort to numerical
methods.
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Figure 2. A stable, repulsive, type A dn–dn solution. Here V01 = V02 = −1, α = 1/2, k = 1/2
and m = 1.

5. Numerical simulations

In this section, the results of the numerical simulations are discussed. Equation (2) is solved
numerically with initial conditions chosen from the set of exact solutions given in section 3.
The numerical procedure uses a fourth-order Runge–Kutta method to advance in time and a
filtered pseudo-spectral method in space. For each numerical experiment a small amount of
white noise is added as a perturbation to the initial condition.

The figures in this section show the dynamics, as obtained from the numerical
computations, for the n interacting condensates in side-by-side stacks. Each stack displays,
from top to bottom, the modulus of the solution squared |�j(x, t)|2, a contour plot of the
same, the potential Vj(x) = V (x), and the inverse tangent of the Fourier spectrum of
|�j(x, t)|, arctan |�̃j (k)|. For convenience, we use ‘repulsive’ to imply that all n condensates
are self-repelling, whereas ‘attractive’ is used to denote that all n condensates are self-attracting.
The connotation ‘mixed’ denotes there is a combination of self-repelling and self-attracting
condensates. In the case of two condensates ‘mixed’ means one of each kind.

Numerically, stability for trivial-phase solutions is found only for solutions satisfying the
first assertion of theorem 1. Although stability or instability is independent of the elliptic
modulus k, the onset of instabilities is found to be accelerated by high values of k > 0.9.

Figure 2 shows the dynamics for a type A repulsive dn–dn solution with V01 = V02 = −1.
Figure 3 shows a type B repulsive dn–dn solution. Both exact solutions satisfy the first part
of theorem 1. The numerical results confirm the analytical proof of stability. Note that in the
numerical experiments for figures 2 and 3 both condensates are localized in the troughs of the
potential. Thus the stability of these exact solutions appears similar to the stable behaviour in
a linear system.
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Figure 3. A stable, repulsive, type B3 dn–dn solution. Here α = 1/2, k = 1/2 and m = 1. The
condensate on the left is in a B3a state, and the condensate on the right is in a B3c state.
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Figure 4. An unstable, repulsive, type B3 dn–dn solution. Here α = −0.4, k = 1/2 and m = 1.
The condensate on the left is in a B3b state, and the condensate on the right is in a B3c state.

Figure 4 illustrates that not all stationary repulsive dn–dn solutions are stable. The density
of the wavefunction describing the condensate on the right is never zero, but the density of the
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Figure 5. An unstable, attractive, type A Cn–Cn solution. Here V01 = −0.1, V02 = −0.01, α =
1/2, k = 1

2 and m = 1.

wavefunction describing the condensate on the left has isolated zeros, and the first criterion
of theorem 1 no longer applies. This solution remains coherent for almost 500 time units.
It displays behaviour quite typical of unstable repulsive solutions. These solutions break up,
and their density maxima seem drawn to the peaks of the potential. In this case, the initial
condition for the condensate on the left is localized on the peaks of the potential, whereas the
condensate on the right is localized in the troughs of the potential.

Figure 5 shows the typical dynamics of an attractive solution. The instability mechanisms
for attractive condensates tend to focus the condensates into non-stationary peaks. Note that
the instability does not occur until after approximately 300 time units, hence the configuration
illustrated in figure 5 may be long-lived enough to be realized experimentally. The analogous
solution for one condensate (n = 1) was found to be stable numerically in [20].

Figure 6 shows the dynamics of a stationary mixed dn–dn solution. Again, this solution
persists for approximately 300 time units before the onset of instability. Mixed solutions were
also found that persisted for more than 3000 time units. This figure allows us to analyse the
process that leads to the onset of instability. The Fourier spectrum displays new modes that
are gradually being activated. These new modes quickly reach amplitudes comparable to those
of the original modes. This process is repeated as more modes are added, resulting in a quick
evolution of the spectrum to one such as seen in figure 5.

In figure 7 the dynamics of a stable three-species (n = 3) repulsive dn–dn–dn condensate
is shown, for the case of a positive-definite interaction matrix α. Figure 8 displays the
dynamics of an unstable type A three-species repulsive dn–dn–dn condensate. Unlike the
stable run of figure 7, now the interaction matrix α is not positive definite and the results of
theorem 1 do not apply.

For nontrivial-phase solutions, analytical methods provide no answers. The numerics
can be used to investigate the stability of these solutions. For the elliptic solutions, this is
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2 , m = 1, and the interaction matrix α that is not positive definite.
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problematic, because it requires the periods of the phase and amplitude to be commensurate,
effectively quantizing the parameter space of the solutions. If this is not done, the solutions are
quasiperiodic. Using spectral methods to solve the initial-value problem for these solutions
results in boundary effects. On the other hand, the quantization condition on parameter space
is a nonlocal condition, whose solution is quite involved. In the trigonometric limit (k → 0),
the phase quantization condition is automatically satisfied. It is this limit which we examine
numerically.

Theorem 1 suggests that solutions whose density is never zero have the possibility of
being stable for condensates with repulsive self-interaction, as long as the interaction matrix
α is positive definite. Indeed, the only trigonometric nontrivial-phase solutions that appear to
be stable numerically occur in this regime. As in [19], a sufficient amount of offset appears
to be a requirement for stability. Figure 9 displays an unstable trigonometric nontrivial-phase
solution, corresponding to offset parameters B1 = B2 = 1/2. On the other hand, for more
offset (B1 = B2 = 1), it appears that the condensates are stable (figure 10). Of course, the
numerics do not allow such a conclusion. It does however suggest that the onset of instability
time of this solution is larger than t = 2000, the duration of the numerical runs. It is therefore
conceivable that these solutions are observable, since their lifetime exceeds the duration of
current experiments (see [35], for the time scale comparisons).

6. Conclusions

We have constructed large families of stationary solutions of the vector NLS (2) with periodic
potential, modelling the interaction of different components of a Bose–Einstein condensate
in a lattice potential. Some of these solutions (type A) degenerate to solutions of the free
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NLS equation as the potential strength → 0. These solutions have both trigonometric and
hyperbolic (soliton) limits. The trigonometric limit is especially relevant, as it models the
dynamics of a multi-component condensate in an optical potential. Other solutions (type B)
degenerate to the zero solution of the free NLS equation as the potential strength → 0.
These solutions have hyperbolic (soliton) limits, but no trigonometric limits. Both families of
solutions have trivial-phase solutions and solutions with a nontrivial-phase profile.

For some trivial-phase solutions, stability analysis is possible: we proved that for a
positive-definite interaction matrix α (mostly repulsive interactions), solutions without zeros
are linearly stable. Likewise, if the interaction matrix α is negative definite (mostly attractive
interactions), solutions without zeros are unstable.

For all other solutions, numerical methods provide the main means of investigating their
dynamical stability. Of all trivial-phase solutions, only those without zeros and a positive-
definite interaction matrix α are found to be stable. For the nontrivial-phase solutions, we
restricted ourselves to the trigonometric limit, in which no quantization of parameter space is
required. It appears that solutions whose density profile has sufficient offset are stable, or at
least that their onset of instability time becomes unbounded as the offset becomes infinite.
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